
Lessons learned building a self-driving car on
ROS

Nicolò Valigi (nicolovaligi.com)
Software Engineer at Cruise Automation
September 29, 2018

1

http://nicolovaligi.com


The car

A fleet of 100 self driving cars driving around San Francisco and a
team of 500 Software Engineers writing code for them.

2



The sensors

Each car has ~ 10 cameras (fish-eye, wides, …), an handful of
LIDARs and radars, an IMU, wheel sensors, … Roughly 1GB/s of
data coming in from the sensors.

3



Goals of this talk

The goal of this talk is to share some of the directions where we
have pushed ROS to make it scale up to a complex problem.

Three areas of focus:

• Determinism and simulation
• Core framework improvements
• Developer tooling

4



Simulation and determinism



Why simulation

Testing on real cars is inconvenient and expensive.

We record sensor data as the fleet is driving, and we want to reuse
it for tests, simulations, and development of algorithms.

The idea is to spin up a bunch of cloud machines for large-scale
simulations of different scenarios.

but…

5



Where ROS falls short

ROS supports playing back recorded data from a bag, essentially
replacing the driver nodes.

The C++ and Python client libraries can also listen to the recorded
clock ticks, essentially reproducing the original time stamps.

Simulating time is enough for small systems, but breaks down soon:

• on slower hardware, you either slow down the replay or
occasionaly miss frames.

• determinism goes out of the window (see Ingo Lütkebohle’s
great talk at ROSCon 2017).

6



What we did at Cruise

Simulation needs to be a first-class concept of any Robotics
framework. On top of ROS, we added systems to achieve
deterministic lock-step simulation from recorded data.

Three steps to achieve this:

1. remove flexibility in the pub-sub model → precise
computation graph

2. schedule computations deterministically (by controlling data
flow)

3. send acknowledgements to keep track of computations inside
the nodes.

7



Core framework improvements



Interaction with the OS scheduling

ROS encourages a proliferation of nodes and nodelets. Under load,
this becomes an OS scheduling nightmare, as you have many more
processes/threads than CPU cores.

8



Runtime profiling

The framework doesn’t help you keep track of the runtime of
different components. In the typical Robotics stack, this means
that downstream components are late and you don’t know why.

What we did at Cruise

• built some tooling around the Chrome trace viewer for
visualizing flame graphs throughout the system.

• pass around contextual information that can be used to trace
metrics about a thread of computation (e.g. computer vision
pipeline).

9



Profile viewer

10



Developer tooling



Rosbag, serialization, and data

Bags are good for logging but:

• the file format needs lots of file seeks → unsuitable for
“big-data” style tooling

• ROS serialization is not forwards compatible at all: just
adding a new field breaks deserialization on the old code.

What we did at Cruise

• built an extensive data pipeline to convert bags to slice and
dice bags, supporting big-data tools for batch requests.

11



Webviz vs ROS-style tooling

RQt, Rviz, and friends are very flexibile, but:

• need a Linux workstation with ROS

• have a steep learning curve for both use and customization

What we did at Cruise

• created a Web-based frontend that emulates most of the RQt
set of features, and can easily be extended in Javascript.

12



Webviz

13



Build system

Catkin’s modularity means that it needs to do extra work for each
build, making it slow.

What we did at Cruise

• migrated to Bazel, the open source version of Google’s build
system

• sped up workstation builds and added a shared cache for CI

14



Thank you


	Simulation and determinism
	Core framework improvements
	Developer tooling
	Thank you

