Optimizing beyond the
optimizer: LTO and FDO

Nicolo Valigi
June 15, 2019

PATRON

Communltq Crumbs

%y, MILANO _s

{b%ﬂﬂ"

SPONSORS

<S> CONAN

C/C++ package manager

” AV 588 SIJEO fg Hexacon L
develer VIDEOGIOCHI A

§

(Goals

Firefox Is Now Built With Clang+LTO Everywhere, Sizable

Performance Wins For Linux
Written by Michael Larabel in Mozilla on 12 September 2018 at 05:33 AM EDT. 50 Comments

Firefox nightly builds are now built with the LLVM Clang compiler on all major

Q platforms and the Linux build in particular is also now utilizing PGO

optimizations too. Faster Firefox is coming thanks to this compiler work.

 Make programs run faster with little (?) effort

* Practical tips, but also learn about compilers

The C/C++ compilation model

a-CC b.CC CICC

gen gen gen Compiler
| | |
a.0 b.o c.O
.................... l .Il 1
lllnk » Linker
a.out

Why separate compilation Is great

+ parallel: each Translation Unit (roughly .cpp file) is compiled
independently, thus using multiple CPUs. The only serial step is the linking at

the end.

+ iIncremental: changes in one .cpp file only cause a single compilation and
the link, which is much faster than recompiling from scratch.

When separate compilation breaks down (1/3)

main2.cc

1 int doNothing() A

2 return 0;

3 }

4

5 int main() A

6 for (int 1 =0; i <1'000'000'000; i++) {

7 doNothing();

8 s

9 }
'[-) code g1 master) X g++ -std=c++17 -02 -flto -0 main2 main2.cc
=» code g1 master) X time ./main2

./main2 ©.00s user 0.00s system 60% cpu 0.004 total
=» code g1 master) X

When separate compilation breaks down (2/3)

#include "1lib.h" 1 int doNothing() :
2

. lib.cc X -

int doNothing() A
return 0;

int main() {
for (int 1 =03 1 < 1'000'000'000;: i++) {
doNothing();

}

0O Jd O U1 B W N B

¥

S~ W N =

When separate compilation breaks down (3/3)

=» code X g++ -std=c++17 -02 -0 main-with-11b main.cc lib.cc
=» code X time ./main-with-11b
./main-with-11b 1.31s user 0.00s system 99% cpu 1.316 total

The program is actually calling the function a billion times now!

The magic of Iinlining

Direct benefits: inlining removes the overhead of the call/return pair, avoids
setting up the stack for the callee, and passing arguments and return values.

Indirect benefits: gives the optimizer more context to work with, finding
more places to apply standard optimizations.

Cons: increased compilation time. Potentially increased binary size, which is
not great for CPU caches.

Give me the magic flag!

=» code X g++ -std=c++1/ -02 -flto -o main-1to main.cc lib.cc
=» code X time ./main-1to
./main-1to 0.00s user 0.00s system 21% cpu 0.012 total

We add a magic -flto flag to the compiler invocation, and behold!

With the LTO (Link Time Optimization) flag, the compiler is again able to
inline across the different .cc files.

What does LTO do?

a.CC b.cCC C.CC
| | |

opt opt opt Compiler
| | |

a. Ll b. L1 C. LL

.................... ymmmmmmmmmm$mmmmmmmmmm%mmmm
opt
| } LTO
ng

What’s wrong with LTO

Let’s call this conventional (or monolithic) LTO. It’s useful, but:
- slow, because the final optimization step is serial and can’t be parallelized

- non incremental, because changing a single source file causes a lot of
work to be wasted

Import inline
candidates from <
other modules

-

Parallel LTO

l

link

a.cc b.cc c.cc

a.Hl bfll cfll
thin link |

a. 1% p 1™ e Ui

opt Bﬁt o;;t

gén gén gén

Parallel

Recap about LTO

 LTO allows the compiler to jointly inline and optimize functions defined in
different translation units.

* Conventional, monolithic LTO doesn’t scale well for larger programs, both
In terms of time and memory.

e Parallel LTO approaches, gcc’s WHOPR and LLVM'’s ThinLTO scale to
large projects, like Chrome and Firefox.

Feedback Directed
Optimization (or PGO)

Back to Inlining

Q: How does the compiler decide which functions to inline?

It usually uses manually-tuned heuristics, but maybe we can do better..

Profile Guided Optimization

 The idea is to run the program, profile its runtime, and feed that
information back to the compiler to inform its optimization decisions.

 Examples: inline decisions, loop unrolling, code layout in branches

PGO in practice

To use Feedback Driven Optimization, the build process must be extended:

Source »instrumented
code build
l
run profile l
production

build

The call graph

render_one_pixel
99.93%
. Each node in the call graph is a

function body, each edge is a

e TOos W4 l~| 0r
U2 .0 U S0 ¢ J0

trace initialize 2D buffer

£ 789 e function call.
(0.04%) (47.01%)

Edges are annotated with the
— e . likelihood of that branch being
R taken at runtime.

intersect_objects shade_reflection
51.65% 24.29%
(0.14%) (0.03%)

1. 20%

LTO and PGO (LIPO)

Idea: use the call graph for inlining decisions with a greedy clustering
algorithm (LIPO, built by Google for gcc, 2010).

. Compute the sum total of all dynamic call edge counts.
. Create an array of sorted edges in descending order of their call counts.

. Find the cutoft call count:
(a) Iterate through the sorted edge array and add up the call counts.

(b) If the current total count reaches 95% of the count computed at step 1, stop. The cutoft edge
count 1s the count of the current edge. A edge 1s considered hot 1f its count 1s greater than the
cutoff count.

. Start module grouping: For each call graph node, find all nodes that are reachable from it 1n a
reduced call graph, which contains only hot edges. Add the defining modules of the reachable nodes
to the module group of the node being processed.

Figure 4. Greedy clustering algorithm for module group formation.

AutoFDO

 Uses a sampling-based approach that doesn’t need instrumentation.

 The overhead is really small thanks to CPU hardware counters and the
pertf tool in Linux. Production servers can be profiled while running!

e Just a few lines to use it in LLVM

$ clang++ -02 —-g code.cc -0 code

$ perf record -b ./code

$ create_Lllvm_prof ——-binary=./code ——out=code.prof

$ clang++ -02 —g —fprofile-sample—-use=code.prof code.cc -0 code

Some numbers

How to explore FDO and PGO

Build binutils with plugin support
Build clang from master

Download LLVM’s test-suite, which comes with many nice
benchmarks

Profit

Building a nice linker

$ git clone --depth 1 git://sourceware.org/git/binutils-
gdb.git binutils

$ mkdir build

$ cd build

$../binutils/configure --enable-gold --enable-plugins --
disable-werror --prefix=$HOME/clang9

$ make all-gold
$ make install-gold

Building clang and the linker plugin

$ cmake \
./ 1lvm \
-DLLVM ENABLE PROJECTS="clang" \
-DCMAKE BUILD TYPE=Release \
-GNinja \
-DLLVM BINUTILS INCDIR=$HOME/code/binutils/include \ -
DCMAKE INSTALL PREFIX=%$HOME/clang9

$ ninja install

Building the clang benchmark suite

$ PATH=$HOME/clang9/bin:$PATH cmake \
co
-DCMAKE_C _COMPILER=$HOME/clang9/bin/clang \
-GNinja \
-DTEST SUITE BENCHMARKING ONLY=0ON \
-DCMAKE AR=$HOME/clang9/bin/1lvm-ar \
-DCMAKE NM=$HOME/clang9/bin/11lvm-nm \
-DCMAKE RANLIB=$HOME/clang9/bin/1l1lvm-ranlib \
-C ../cmake/caches/ReleaselL T0.cmake

Time [seconds]

5.25

9
o

1.75

Benchmarks

Linking time

-O3

ThinLTO

3
2
S 225
O
@)
)
2
9 1.5
C
0
59
S .75
N

0

Runtime [%]

LTO

ThinLTO

gcc WHOPR vs clang

28m18s
B Serial Phase B Parallel Phase

. Time Peak Memory (GB)

13.7

1012 1.013 1,013

Monolithic 8 16 32 8 16 32 Monolithic 8 16 32 8 16 32
LTO ThinLTO GCC: LTO ThinLTO GCC:

WPA+LTRANS WPA+LTRANS

Saving space in the Linux kernel

First, with LTO disabled:

$ make stm32 defconfig
S make vmlinux
S size vmlinux

text data bss dec hex filename
1704024 144732 117660 1966416 1le0150 vmlinux

And with LTO enabled:

$./scripts/config --enable CONFIG LTO MENU
$ make vmlinux
$ size vmlinux

text data bss dec hex filename
1281644 142492 112985 1537121 177461 vmlinux

From: Shrinking the kernel with link-time optimization, LWM.net

http://LWM.net

Thanks/Questions

nicolovaligi.com

http://nicolovaligi.com

