
Optimizing beyond the
optimizer: LTO and FDO

Nicolò Valigi

June 15, 2019

Goals

• Make programs run faster with little (?) effort

• Practical tips, but also learn about compilers

The C/C++ compilation model
a.cc b.cc c.cc

opt opt opt

a.o b.o c.o

link

a.out

gen gen gen } Compiler

} Linker

Why separate compilation is great

+ parallel: each Translation Unit (roughly .cpp file) is compiled
independently, thus using multiple CPUs. The only serial step is the linking at
the end.

+ incremental: changes in one .cpp file only cause a single compilation and
the link, which is much faster than recompiling from scratch.

When separate compilation breaks down (1/3)

When separate compilation breaks down (2/3)

When separate compilation breaks down (3/3)

The program is actually calling the function a billion times now!

The magic of inlining

Direct benefits: inlining removes the overhead of the call/return pair, avoids
setting up the stack for the callee, and passing arguments and return values.

Indirect benefits: gives the optimizer more context to work with, finding
more places to apply standard optimizations.

Cons: increased compilation time. Potentially increased binary size, which is
not great for CPU caches.

Give me the magic flag!

We add a magic -flto flag to the compiler invocation, and behold!

With the LTO (Link Time Optimization) flag, the compiler is again able to
inline across the different .cc files.

What does LTO do?

a.cc b.cc c.cc

opt opt opt

a.ll b.ll c.ll

opt

a.out

gen

} Compiler

LTO}

What’s wrong with LTO

Let’s call this conventional (or monolithic) LTO. It’s useful, but:

- slow, because the final optimization step is serial and can’t be parallelized

- non incremental, because changing a single source file causes a lot of
work to be wasted

idxidx

Parallel LTO
a.cc b.cc c.cc

opt opt opt

a.ll b.ll c.ll
thin link

gen gen gen }Parallel}Import inline
candidates from
other modules

idxa.ll b.ll c.ll

link

Recap about LTO

• LTO allows the compiler to jointly inline and optimize functions defined in
different translation units.

• Conventional, monolithic LTO doesn’t scale well for larger programs, both
in terms of time and memory.

• Parallel LTO approaches, gcc’s WHOPR and LLVM’s ThinLTO scale to
large projects, like Chrome and Firefox.

Feedback Directed
Optimization (or PGO)

Back to inlining

Q: How does the compiler decide which functions to inline?

It usually uses manually-tuned heuristics, but maybe we can do better..

Profile Guided Optimization

• The idea is to run the program, profile its runtime, and feed that
information back to the compiler to inform its optimization decisions.

• Examples: inline decisions, loop unrolling, code layout in branches

PGO in practice

To use Feedback Driven Optimization, the build process must be extended:

Source
code

instrumented
build

profile

production
build

run

The call graph

Each node in the call graph is a
function body, each edge is a
function call.

Edges are annotated with the
likelihood of that branch being
taken at runtime.

LTO and PGO (LIPO)
Idea: use the call graph for inlining decisions with a greedy clustering
algorithm (LIPO, built by Google for gcc, 2010).

AutoFDO
• Uses a sampling-based approach that doesn’t need instrumentation.

• The overhead is really small thanks to CPU hardware counters and the
perf tool in Linux. Production servers can be profiled while running!

• Just a few lines to use it in LLVM

Some numbers

How to explore FDO and PGO

• Build binutils with plugin support

• Build clang from master

• Download LLVM’s test-suite, which comes with many nice
benchmarks

• Profit

Building a nice linker

$ git clone --depth 1 git://sourceware.org/git/binutils-
gdb.git binutils
$ mkdir build
$ cd build
$../binutils/configure --enable-gold --enable-plugins --
disable-werror --prefix=$HOME/clang9
$ make all-gold
$ make install-gold

Building clang and the linker plugin

$ cmake \
 ../llvm \
 -DLLVM_ENABLE_PROJECTS="clang" \
 -DCMAKE_BUILD_TYPE=Release \
 -GNinja \
 -DLLVM_BINUTILS_INCDIR=$HOME/code/binutils/include \ -
DCMAKE_INSTALL_PREFIX=$HOME/clang9
$ ninja install

Building the clang benchmark suite

$ PATH=$HOME/clang9/bin:$PATH cmake \
 .. \
 -DCMAKE_C_COMPILER=$HOME/clang9/bin/clang \
 -GNinja \
 -DTEST_SUITE_BENCHMARKING_ONLY=ON \
 -DCMAKE_AR=$HOME/clang9/bin/llvm-ar \
 -DCMAKE_NM=$HOME/clang9/bin/llvm-nm \
 -DCMAKE_RANLIB=$HOME/clang9/bin/llvm-ranlib \
 -C ../cmake/caches/ReleaseLTO.cmake

Benchmarks
Linking time

Ti
m

e
[s

ec
on

ds
]

0

1.75

3.5

5.25

7

-O3 ThinLTO

Runtime [%]

%
 d

iff
er

en
ce

 [s
ec

od
ns

]

0

0.75

1.5

2.25

3

-O3 LTO ThinLTO

gcc WHOPR vs clang

Saving space in the Linux kernel

From: Shrinking the kernel with link-time optimization, LWM.net

http://LWM.net

Thanks/Questions
nicolovaligi.com

http://nicolovaligi.com

