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Self-driving cars

Figure 1: Exercise 1: find me
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More down-to-the-carpet projects

Figure 2: Autonomous Roomba
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Motivation for this talk

1. Robots are cool! Learn more about them!
2. Most Robotics programming is done in C++
3. A lot of talk lately about co_await and coroutines, but little in the way of general

architecture for parallelism
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Presentation plan

• The typical architecture of Robotics systems today
• Data flow abstractions for parallelism
• Using data flow graphs in Robotics
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Architecture of Robotics systems



How a robotic system looks like

A typical model for the system architecture of a robot has 3 main components:

• Sense

• Plan

• Act
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Sense

Sense is about building a representation of the environment (both fixed obstacles like walls
and moving actors like pedestrians).

Figure 3: a
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Plan

Plan is about finding a path to the destination through obstacles and the shape of the
environment.

Figure 4: Random graphs used for exploration and planning
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Act

Act is about tracking the planned behavior.

Figure 5: A simple line follower robot
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Why Robotics software is fun

• Sense, Plan, and Act need to run concurrently for the robot to work.
• Strict latency and performance requirements
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Robotics middleware today



ROS (Robot Operating System)

Figure 6: ROS
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About ROS

ROS (Ros Operating System) is the most commonly used middleware for Robotics in use today.
It provides:

• serialization and inter-process communication
• high-level tooling for visualization and debugging
• a wealth of code shared by industry and academia
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Topics, messages, and subscriptions

The underlying model in ROS is publish/subscribe between independent components.

• Sensor drivers (cameras, etc..) publish data over a topic (say, /camera1/image.

• Computation nodes subscribe to messages coming over a topic, do some computation,
and produces output.

• Control drivers (steering wheel, brake, etc..) subscribe to control outputs and send
commands to the mechanical hardware.
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The callback model

Subscribe to a specific topic that carries data that we’re interested in, do some processing,
then publish the result.

// Callback that does the actual processing
void image_callback(const sensor_msgs::ImageConstPtr& msg) {

std::cout << "Received image" << std::endl;
}

...

// Subscribe to incoming messages on a topic
ros::NodeHandle nh;
auto subscriber = nh.subscribe("/camera1", 1, image_callback);
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A more complex system

The resulting system is very modular (multiple sensors, layered planning stack, etc..)
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Problems with ROS callbacks

However, an architecture based on callbacks doesn’t really scale to large architectures:

• it’s not clear how data flows through the system
• it’s easy to end up using old or stale data in different components
• latency and jitter suffer because of IPC
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The Data Flow model



Data Flow graphs

Instead of using callbacks, we can explicitly represent the flow of data throughout the system
as a graph.

For example, let’s take the simple for loop:

// Print the squares of the first 10 squares.
std::vector<int> output;
for (int i = 0; i < 10; i++) {

const auto thisSquare = i * i;
std::cout << thisSquare << "\n";

}

This is all good and well, but what if we want to run the inner loop in parallel.
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A simple Data Flow graph

We can break down the for loop as a series of operations where data flows through a graph:

Figure 7: Simple data flow graph
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The intel TBB library

Figure 8: The Intel TBB library
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The function_node

A function_node expresses computation done in the graph (a function, closure, or function
object).

tbb:function_node<int, int> squarer(g, /* the graph */
tbb::unlimited, /* concurrency */
[](const int &v) {

return v*v; /* computation */
);
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The source_node

A source_node pushes data into the graph (generating sequences or reading data from files).

struct Counter {
Counter(int limit) : limit_(limit), i_(0) {}

bool operator(int& out) {
if (i < limit_) {

out = i++; return true;
} else {

return false;
}

}

int limit_, i_;
}
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Plugging the source_node into the graph

This takes an instance of the functor and plugs it into the graph where it can start feeding data
to other nodes.

tbb::flow::source_node<int> counterNode(g, Counter(10), false);
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The output node

Another function_node simply prints out the results of the computation.

tbb:function_node<int, int> printerNode(g,
tbb::unlimited,
[](const int &v) {

std::cout << v << "\n";
);
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Putting it all together

A tbb:graph instance manages the connection between the nodes, and can start computation.

tbb::graph g;

// Connect the counter node to the computation node.
tbb::make_edge(counterNode, squarerNode);

// Connect the computation node to the output node.
tbb::make_edge(squaredNode, printerNode);

counterNode.activate()

g.wait_for_all();
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A more complex example

Figure 9: A more complex data flow graph
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Data flow in Robotics



QR tags

Figure 10: QR codes are everywhere
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QR tags in Robotics

Figure 11: QR codes can also be used for localization
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Can we make a graph of this?

Figure 12: Simple graph for marker detection
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This is how it looks like

Figure 13: Detected tag
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Holding state in a source_node

struct BagSource {
BagSource(rosbag::Bag* bag) {

view_ = std::make_shared<rosbag::View>(*bag);
it_ = view_->begin();

}

bool operator() (sensor_msgs::ImageConstPtr& out) {
if (it_ == view_->end()) {

return false;
} else {

out = it_->instantiate<sensor_msgs::Image>();
it_++;

}
}

};
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What about multiple cameras?

Stereo (double) cameras are quite common in Robotics because they add depth perception
(just like human eyes).

Figure 14: An Intel RealSense D345 stereo camera

31



Graph layout with multiple cameras

It’s trivial to extend a data flow graph to use multiple cameras.

Figure 15: Graph with two cameras

32



Hooking up external async events

The computation graph can be integrated into an external event-based system (eg ROS) using
tbb::flow::async_node.

struct AsyncRos {
AsyncRos(ros::NodeHandle &nh) : nh_(nh) {
sub_ = nh_.subscribe("/device_0/sensor_0/Infrared_1/image/data", 1,

&AsyncRos::image_callback, this);
}

};
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External async events 2

void subscribe(async_ros_node::gateway_type &gateway) {
gateway.reserve_wait();

std::thread(&AsyncRos::ros_loop, this, std::ref(gateway)).swap(ros_thread_);
}

void ros_loop(async_ros_node::gateway_type &gateway) {
ros::spin();
gateway_->release_wait();

}

void image_callback(const sensor_msgs::ImageConstPtr &img_msg) {
gateway_->try_put(img_msg);

}
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Demo video

Figure 16: Localization using tags from [arxiv.org/abs/1507.02081]
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Tooling

Figure 17: Intel FGA (Flow Graph Analyzer)
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Advanced topics

• Underlying execution model: work stealing scheduler for locality.
• Queueing behavior can be unintuitive at times. In general, you can choose to either buffer

on the receiver side, or return the data back to the sender.
• Data passed around the graph is copied (inconvenient for large data types)
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Alternatives

Many other implementations of Data Flow graphs in C++:

• DSPatch
• TensorFlow
• Pytorch

Why TBB?

• Widely used library
• Integration with SIMD and parallel primitives from the rest of the TBB library.
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http://flowbasedprogramming.com/docs/html/index.html


Thanks / questions
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