
TBB Data Flow graphs in Robotics

Nicolo Valigi nicolovaligi.com
Italian C++ Day 2019

1



Self-driving cars

Figure 1: Exercise 1: find me
2



More down-to-the-carpet projects

Figure 2: Autonomous Roomba

3



Motivation for this talk

1. Robots are cool! Learn more about them!
2. Most Robotics programming is done in C++
3. A lot of talk lately about co_await and coroutines, but little in the way of general

architecture for parallelism

4



Presentation plan

• The typical architecture of Robotics systems today
• Data flow abstractions for parallelism
• Using data flow graphs in Robotics

5



Architecture of Robotics systems



How a robotic system looks like

A typical model for the system architecture of a robot has 3 main components:

• Sense

• Plan

• Act

6



Sense

Sense is about building a representation of the environment (both fixed obstacles like walls
and moving actors like pedestrians).

Figure 3: a
7



Plan

Plan is about finding a path to the destination through obstacles and the shape of the
environment.

Figure 4: Random graphs used for exploration and planning

8



Act

Act is about tracking the planned behavior.

Figure 5: A simple line follower robot

9



Why Robotics software is fun

• Sense, Plan, and Act need to run concurrently for the robot to work.
• Strict latency and performance requirements

10



Robotics middleware today



ROS (Robot Operating System)

Figure 6: ROS

11



About ROS

ROS (Ros Operating System) is the most commonly used middleware for Robotics in use today.
It provides:

• serialization and inter-process communication
• high-level tooling for visualization and debugging
• a wealth of code shared by industry and academia

12



Topics, messages, and subscriptions

The underlying model in ROS is publish/subscribe between independent components.

• Sensor drivers (cameras, etc..) publish data over a topic (say, /camera1/image.

• Computation nodes subscribe to messages coming over a topic, do some computation,
and produces output.

• Control drivers (steering wheel, brake, etc..) subscribe to control outputs and send
commands to the mechanical hardware.

13



The callback model

Subscribe to a specific topic that carries data that we’re interested in, do some processing,
then publish the result.

// Callback that does the actual processing
void image_callback(const sensor_msgs::ImageConstPtr& msg) {

std::cout << "Received image" << std::endl;
}

...

// Subscribe to incoming messages on a topic
ros::NodeHandle nh;
auto subscriber = nh.subscribe("/camera1", 1, image_callback);

14



A more complex system

The resulting system is very modular (multiple sensors, layered planning stack, etc..)

15



Problems with ROS callbacks

However, an architecture based on callbacks doesn’t really scale to large architectures:

• it’s not clear how data flows through the system
• it’s easy to end up using old or stale data in different components
• latency and jitter suffer because of IPC

16



The Data Flow model



Data Flow graphs

Instead of using callbacks, we can explicitly represent the flow of data throughout the system
as a graph.

For example, let’s take the simple for loop:

// Print the squares of the first 10 squares.
std::vector<int> output;
for (int i = 0; i < 10; i++) {

const auto thisSquare = i * i;
std::cout << thisSquare << "\n";

}

This is all good and well, but what if we want to run the inner loop in parallel.

17



A simple Data Flow graph

We can break down the for loop as a series of operations where data flows through a graph:

Figure 7: Simple data flow graph

18



The intel TBB library

Figure 8: The Intel TBB library

19



The function_node

A function_node expresses computation done in the graph (a function, closure, or function
object).

tbb:function_node<int, int> squarer(g, /* the graph */
tbb::unlimited, /* concurrency */
[](const int &v) {

return v*v; /* computation */
);

20



The source_node

A source_node pushes data into the graph (generating sequences or reading data from files).

struct Counter {
Counter(int limit) : limit_(limit), i_(0) {}

bool operator(int& out) {
if (i < limit_) {

out = i++; return true;
} else {

return false;
}

}

int limit_, i_;
}

21



Plugging the source_node into the graph

This takes an instance of the functor and plugs it into the graph where it can start feeding data
to other nodes.

tbb::flow::source_node<int> counterNode(g, Counter(10), false);

22



The output node

Another function_node simply prints out the results of the computation.

tbb:function_node<int, int> printerNode(g,
tbb::unlimited,
[](const int &v) {

std::cout << v << "\n";
);

23



Putting it all together

A tbb:graph instance manages the connection between the nodes, and can start computation.

tbb::graph g;

// Connect the counter node to the computation node.
tbb::make_edge(counterNode, squarerNode);

// Connect the computation node to the output node.
tbb::make_edge(squaredNode, printerNode);

counterNode.activate()

g.wait_for_all();

24



A more complex example

Figure 9: A more complex data flow graph

25



Data flow in Robotics



QR tags

Figure 10: QR codes are everywhere

26



QR tags in Robotics

Figure 11: QR codes can also be used for localization
27



Can we make a graph of this?

Figure 12: Simple graph for marker detection

28



This is how it looks like

Figure 13: Detected tag
29



Holding state in a source_node

struct BagSource {
BagSource(rosbag::Bag* bag) {

view_ = std::make_shared<rosbag::View>(*bag);
it_ = view_->begin();

}

bool operator() (sensor_msgs::ImageConstPtr& out) {
if (it_ == view_->end()) {

return false;
} else {

out = it_->instantiate<sensor_msgs::Image>();
it_++;

}
}

};
30



What about multiple cameras?

Stereo (double) cameras are quite common in Robotics because they add depth perception
(just like human eyes).

Figure 14: An Intel RealSense D345 stereo camera

31



Graph layout with multiple cameras

It’s trivial to extend a data flow graph to use multiple cameras.

Figure 15: Graph with two cameras

32



Hooking up external async events

The computation graph can be integrated into an external event-based system (eg ROS) using
tbb::flow::async_node.

struct AsyncRos {
AsyncRos(ros::NodeHandle &nh) : nh_(nh) {
sub_ = nh_.subscribe("/device_0/sensor_0/Infrared_1/image/data", 1,

&AsyncRos::image_callback, this);
}

};

33



External async events 2

void subscribe(async_ros_node::gateway_type &gateway) {
gateway.reserve_wait();

std::thread(&AsyncRos::ros_loop, this, std::ref(gateway)).swap(ros_thread_);
}

void ros_loop(async_ros_node::gateway_type &gateway) {
ros::spin();
gateway_->release_wait();

}

void image_callback(const sensor_msgs::ImageConstPtr &img_msg) {
gateway_->try_put(img_msg);

}

34



Demo video

Figure 16: Localization using tags from [arxiv.org/abs/1507.02081]
35



Tooling

Figure 17: Intel FGA (Flow Graph Analyzer)
36



Advanced topics

• Underlying execution model: work stealing scheduler for locality.
• Queueing behavior can be unintuitive at times. In general, you can choose to either buffer

on the receiver side, or return the data back to the sender.
• Data passed around the graph is copied (inconvenient for large data types)

37



Alternatives

Many other implementations of Data Flow graphs in C++:

• DSPatch
• TensorFlow
• Pytorch

Why TBB?

• Widely used library
• Integration with SIMD and parallel primitives from the rest of the TBB library.

38

http://flowbasedprogramming.com/docs/html/index.html


Thanks / questions


	Architecture of Robotics systems
	Robotics middleware today
	The Data Flow model
	Data flow in Robotics
	Thanks / questions

